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Abstract 

This paper attempts to apply most powerful unit root tests for stock prices in Ho Chi 

Minh City Trading Center (HoSTC) of Vietnam in the context extreme initial values 

are highly possible. Theoretically, we find in that case ADF F test is not only superior 

to the tests which are most powerful for small and moderate initial values, as shown 

by the recent researches such as Muller and Elliott (2003), but also has better 

performance against ADF t test given small and moderate sample sizes and, 

especially, autoregressive lag coefficient is close to unity. The procedure proposed 

by Holden and Perman (1994), which takes advantage of both t-type and F-type 

ADF tests is able to reject almost all of the series appearing to have extreme initial 

values in HoSTC. Although, surprisingly, unit root tests as a whole cannot decisively 

reject the null, we would maintain the view that the stock prices hardly follow random 

walk hypothesis implying the market is inefficient. 
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1 Introduction 

The Ho Chi Minh City-based Stock Trading Center of Vietnam (HoSTC) was 

officially inaugurated on July 20, 2000 with the first trading on July 28, 2000. After 

more than 5 years of development, it has recently received more attentions from 

international financial institutions and researchers as a newly emerging market. 

From the common belief that the market is hardly efficient, this paper would like to 

take a first analysis by using robust unit root tests to test the Efficient Market 

Hypothesis (in weak form) for stock prices in HoSTC. 

Tests for the existence of unit root in univariate time series have been intensively 

discussed in the literature since the seminal research of Dickey and Fuller (1979) . 

Among various methods, the tests of Dickey and Fuller (ADF test, 1979 and 1981)  

and Philips and Perron (PP test, 1988)  together with their recently modified versions 

proposed by Elliot, Rothenberg, and Stock (GLS-DF test, 1996)  and Perron and Ng 

(GLS-MZ test, 2001) have been widely applied for the empirical researches. While 

the original versions (DF, ADF, and PP tests) suffer significant size distortions and 

                                                 

i The author thanks Professor Kimio Morimune, Kyoto University, for his invaluable 
comments in writing this paper. 
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low power, the modified methods have shown much improvement especially when 

the series has an autoregressive root close to (but less than) unity or the moving 

average component with large negative root, as long as the selection of lag length is 

appropriate . 

However, more recent researches (such as Elliott and Muller, 2003  and Muller and 

Elliot, 2006 ) have found that the nuisance parameter, initial value, does affect the 

power of these tests: If the initial value (IV) is considerably far from its 

unconditionally expected value, the performance of modified tests, e.g. GLS-DF and 

GLS-MZ tests become worse with the power approaching zero while t-type ADF test 

improves its power. The issue can also be partly observed through the simulation 

and evaluation of Dejong (1991) : the power of ADF t(1) increases when value of x0
* 

increases. As there is no test uniformly most powerful for various values of IV 

deviation which is often difficult to verify, the selection of several tests at the same 

time or by using the tests that maximize power while achieving some degree of 

robustness to the impact of IV – see Muller and Elliott (2003) and Harvey and 

Leybourne (2006)  – is unavoidable and need to be justified by the researcher. This 

paper, continuing from the current discussions on power of the tests, make an effort 

to show the usefulness of including ADF F test besides t test in testing for unit root 

of the series, which is very likely to have unexpected IVs. Although asymptotically, 

the power of both ADF t and F tests would be equivalently superior in the case of 

large IV deviation, for finite sample size ADF F test shows better performance than t 

test. We make a recommendation for applying Holden and Perman’s procedure , 

thereafter called HP-ADF (Holden and Perman, 1994) – which proposes a strategy 

to use both ADF F and t tests – in compliment with others to construct robust tests 

for unit root. The recommended testing method is applied for the stock prices series 

in HoSTC, where the existences of extreme IVs are highly possible. The empirical 
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results reveal F/HP-ADF test is indeed better than t test as well as the other used 

tests in detecting stationary series. However, it is surprising that the other unit root 

tests cannot reject null for almost all of the prices series of the stocks quoted in 

HoSTC. Given the high rejection rates of HP-ADF among the series with suspected 

extreme IVs and the low power of the other tests when the IV is close to the 

deterministic trend and the sample sizes are small/moderate, we would still support 

the view that the stock prices series in HoSTC behave like trend other than 

differences stationary processes. 

The remaining of the paper is organized as follow: Section 2 shows that t-type and 

F-type ADF tests increase their power when the IV under alternative becomes 

further from its unconditionally expected value. In addition, we notes that F-type 

ADF test is even more powerful than t-type ADF test given the sample size is 

moderate. This discussion leads to our recommendation to apply Holden and 

Perman’s procedure of using ADF tests (Holden and Perman, 1994). Section 3 

presents simulations to illustrate the issues. In Section 4, we apply the tests 

recommended from the previous parts to test the random walk hypothesis for 

HoSTC. Comments which support the rejections of HP-ADF test are also given. The 

last section is the conclusion. 

2 The power of F- and t-type ADF test 

2.1 F test 

This section aims at showing that the power of F test improves when the deviation of 

IV (in absolute value) from the deterministic component increases from some certain 

non-zero value. Suppose the series we want to test follows the DGP: 

   yt = c + αyt-1 + βt + εt,  t = 1, 2, …, T  (1) 



 5

where εt ~ IID(0,σ2), c, α, and β are fixed parameters, with α <1. We assume that T, 

although being finite, but large enough to approximate )1/(1
1

1 αα −≈∑
=
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t

t . 

Let Δy0 = y0 – w0, where w0 is the unconditional expectation of y0: 

   w0 = c/(1-α) – βα/(1-α)2    (2) 

By recursive transformation of (1) and replacement of (2), we get: 
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We now consider the change of F statistic for (α, β) = (1,0) in (1), when the IV, y0, 

moves out of the deterministic trend, given c, α, and β. F statistic is basically the 

ratio of sum of squared errors (SSE) restricted by (α, β) = (1, 0) and the unrestricted 

SSE. When Δy0 changes, the regression (1) is adjusted in the way that Δy0αt and 

Δy0αt-1 are added on yt and yt-1, respectively (see (3)). As the true parameters are 

fixed, given {εt}, we would expect the (relative) changes of the unrestricted SSE are 

ignorable, especially, when |Δy0| is big enough. Therefore, our focus is just on the 

changes of the restricted SSE. 
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Let SSEF is the restricted SSE we have: 
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As {Ht(ε)} are zero-mean random variables, plim(Q/T) = 0 but plim(S/T) ≠ 0. As 

{HBt B(ε)} are zero-mean random variables with finite variances, plim(Q/T) = 0 but 
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plim(S2/T) ≠ 0. Therefore, with T big enough, P is close to zero implying the third 

term in (6) is ignorable. As our concerns are just for the case of large |ΔyB0 B|, the 

ignorance of this term is just for purpose of simplicity that does not affect our final 

remarks. We are able to approximate ( ) ( )[ ]∑
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+Δ≈
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where SSE0 is the unrestricted SSE. Given the parameters of the DGP described in 

(1), from (8), it is clear that when |Δy0| increases (at least from certain positive value), 

y0 more deviates from its unconditional expectation, the value of F statistic increases 

implying the power improvement of F-type ADF test. 

2.2 t test 

We will use the same approach by treating t test as a special F test with only one 

restriction. We have the restricted error at time t as the tth residual of the following 

regression: 

   yt – yt-1 = c + βt + et     (9) 

Setting X as T x 2 matrix including columns of unities and time index, we have the 

restricted error at time t: 

   et = zt – X(X’X)-1X’zt     (10) 
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We derive the value of a, b, and d as the functions of T: 
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We should also recognize that: 

   a + b(T+1)/2 = 1/T     (12) 

   b + d(T+1)/2 = 0     (13) 

Replace a, b, and d into (10), we have: 
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For T big enough: 
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Replace (4) and (15) into (14), gather the terms of Δy0 and β in to separate groups, 

and pay attention to the equations (12) and (13), we will see that the group of terms 

with β become zero. Finally, we have: 
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Let SSEt is the restricted SSE, we have: 
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As {It(ε)} are the regression residuals of (9), ∑
=

=
T

t
tI

1

0)(ε  and ∑
=

=
T

t
ttI

1

0)(ε . We are 

also able to approximate: 

   ( ) ( )[ ]∑
=

+Δ≈
T

t
tt IBySSE

1

22
0 ε  

then   
[ ]

( )kT
SSE

SSEIBy
t

T

t
t

stat −×
−+Δ

≈
∑
=

0

0
1

22
0

2
)()( ε

  (18) 

Similar to the case of F test, given the fixed parameters, the value of t squared 

statistic increases when |Δy0| rises (at least from certain positive value) implying 

power improvement of ADF t test. 

2.3 F and t statistics sensitivity to Δy0 

From the previous parts, we know that both F and t statistics increase when |Δy0| 

goes up from certain values. We now prove that, at some finite T, F statistic 

increase at higher speed than t statistic when |Δy0| increases that indeed makes F 

test more powerful than t test. 
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We note that, when Δy0 = 0, the distribution of F and t2 statistics under alternative of 

stationary asymptotically follow noncentral F distributions, particular: F ~ F(2, T-3, δF) 

and t2 ~ F(1, T-3, δt) where δF and δt are the noncentral parameters. If we set F0 and 

t02 are the F and t2 statistics when Δy0 = 0, from (8) and (18) we have: 
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With non-zero Δy0, given {εt} implying Ht(ε) and It(ε) are unchanged, replace (19) and 

(20) into (8) and (18) we get the statistics (again, we ignore the change of SSE0) 
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The equations (21) and (22) imply that when Δy0 ≠ 0 (and big enough), the 

distributions of F and t2 statistics just move to the right or in other words, Δy0 going 

up ‘moves’ the critical values to the left while holding the distributions unchanged, 

approximately. This means that the power of F and t2 tests approaches 1 when |Δy0| 

increases. Set the ratio K 
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We see that, if K is big enough, the critical value of F test, Fcv, will ‘move’ to zero 

before that of t test, tcv and vice versa. To numerically illustrate this issue, we 

consider a practical example: suppose α = 0.98; T = 1,000 and we test at 5% of 



 11

significance, which leads to Fcrit = 6.25 and tcrit = -3.41 (for one-side test) or tcrit
2 = 

11.63. We get q = 0.02/1.98 = 0.0101, A = q – 1/T = 0.0091, and B = q – a – 2b/(1-α) 

– d/(1-α)2 = 0.0067, then 

   6827.0
0067.02

0091.0
=

∗
=K  

When Fcrit ‘moves’ to zero, t2crit moves to t*2, which is: 

   16.96827.0/25.6/2*2 ===− KFtt critcrit  

or    047.216.963.112* >=−=t  

The positive t* indicates that for a sample of {yt} with above specifications, there will 

be some value of Δy0 that make the power of F test reach 1 while that of t test is still 

at some rate which is less than 1. In other words, F test will be superior to t test if 

|Δy0| becomes bigger than a certain value. We can also derive, given α = 0.98, only 

with very large sample sizes, T > 4,300, would make F test never superior to t test 

that implies the practicality of the use of F test. This critical size will reduce if α is 

smaller (e.g. if α = 0.95, the critical sample size, T > 1,800). However, these sample 

sizes are so large that both F and t test have power very close to 1. 

Remarks: 

We are now ready to make some remarks about the power of F and t test against 

the alternative described in (1). From (6) and (15), we realize that both t-typed and 

F-typed ADF tests are not affected by the nuisance parameter β, the time trend 

coefficient, c, the intercept, but depend on |Δy0|, the deviation of IV from its 

unconditional expectation under alternative hypothesis, T, the sample size,  and α, 

the autoregressive lag coefficient. 

Regarding to Δy0, both t-type and F-type ADF tests may have small power at near-

zero Δy0, when the IV lies at the unconditional expectation under alternative 
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hypothesis. As t-typed ADF test is one-side test, its power is higher than that of F 

test when |Δy0| is small and zero. When |Δy0| increases from a certain big value, the 

power of the tests both increase. However, with moderate (practical) sample size T, 

F-type ADF test raises its power more quickly than the t test and to a certain big 

value of |Δy0|, F test even dominates t test. The more powerful of F test when the IV 

is far from its unconditional expectation is not derived from joint hypothesis test (as 

mentioned in the first point, the power does not depend on β) but from the higher 

sensitivity of F statistic to Δy0 than that of t statistic.  

Regarding to sample size, both tests improve their statistic value with the increase 

of T. Referring to (7) and (17), when T goes to infinitive, A and B approach q and the 

power of the tests become closer to the bounds. At very large T, A and B are no 

longer significantly different, the ratio K in (23) reduces and approach 0.5. Therefore, 

at substantially large T, F-type ADF test maybe no longer superior to ADF-t test for 

all Δy0. However, it is very likely that both tests achieve power of 1 for all Δy0.  

Regarding to α, the first lag coefficient, from (23), we see that the ratio K will 

increase when α approaches unity implying F test is more distinguishable from t test, 

given moderate sample size and substantial |Δy0|. 

2.4 Holden and Perman’s approach 

The power superiority of F test when unexpected IV appears, especially when α is 

close to unity, is worth to consider including it in the unit root test procedure. The 

approach proposed by Holden and Perman (1994), which uses both F and t tests in 

their sequential procedures would be recommended. We limit the discussion on the 

tests concerning only with lag and time trend coefficients (ADF t and φ3 tests). There 

are advantages in this approach over applying pure t-typed or F-typed ADF test. HP-
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ADF basically has similar size to t and F tests in relevant cases 1F

ii. Any improvement 

in power of HP-ADF would be an advantage. HP-ADF indeed overcomes ADF t test 

when |Δy0| ≠ 0 (and large enough). In critical situation, as F test becomes more 

powerful, it may reject null while t test cannot. The normality test based on null of (α 

= 1|β ≠ 0) at the subsequent step of HP-ADF procedure would be more likely to lead 

to rejection by HP-ADF test2F

iii. For the case of zero ∆y0, as (one-side) t test has 

higher power than F test, it is possible that F test accepts the null while t test does 

not. Therefore, in this case, it is recommended to follow the rejection of t test. If 

following this rule, HP-ADF is more powerful than F test when IV lies in/near the 

deterministic trend. In summary, HP-ADF test is superior to both pure t and F tests; 

especially HP-ADF is more powerful than ADF t test when the IV is far from the 

deterministic trend under the alternative.  

Since it is difficult to justify if the series have extreme IV or not, an appropriate 

strategy is to select the asymptotically efficient unit root tests for different ranges of 

IV. We recommend, in such situation, HP-ADF test should be used in compliment 

with GLS-DF (Elliott et al, 1996) or other tests, which are powerful against the 

alternative of small or moderate |Δy0| (such as the tests analyzed in Muller and 

Elliott, 2003). 

                                                 

ii If the series follows a process with unit root and time trend, t test is likely to reject too few 
while the rejection of HP-ADF is more appropriate, at the rate close to nominal size. This is 
because, when the time trend coefficient is non-zero, the distribution of t statistic follows 
standard normal distribution (or t distribution) other than the non-standard distribution 
discovered by Dickey and Fuller (see Holden and Perman, 1994). The over-rejection of F 
test is clear due to joint test nature. 
iii Similar to Elder et. al’s (2001) discussion for φ1 test, φ3 test cannot improve the power 
given expected IV. The more powerful of φ3 is just derived from more sensitive of the statistic 
to Δy0, not from the nature of joint test by itself. 
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3 Simulations 

In this section, simulations are carried out to illustrate some issues remarked at the 

end of 2H 2.3 and 3H 2.4, which are concerned with the behavior of the tests power 

regarding to the changes of Δy0 and T. We limit the simulations for the case of white 

noise errors. Further details about the behavior when the errors are serial correlated 

and the size of the tests are presented in the Appendix. Since the increase in power 

of ADF t test when IV is far from the expected value has been confirmed in several 

recent researches, in this part, we just consider the superiority of F/HP-ADF test 

over t test. In addition, the results by using GLS-DF are also included for 

comparative analysis. The DGP is: 

  yt = αyt-1 + βt + εt,      (24) 

where εt ~ IIN(0, 0.012), t = 1, 2, …, T. The IV is determined by 

  y0 = wo + Δy0 

where   w0 = -βα/(1-α)2 

and  |Δy0| = (0, 10, 20, … ,50)σ 

Two sample sizes of T = 500 and T = 1,000 are selected to see the effect of size on 

the power of the tests and statistic. For simplicity, we do not include the nuisance 

parameter c, the intercept that does not affect the essentials of the simulation and its 

result. We arbitrarily set β = 0.00005 and α = 0.98. The output of the simulation is 

based on 5,000 replications for each value of Δy0. The results are shown in 4HTable 1, 

which support the remarks in the previous part (note that the power of HP-ADF and 

F tests in the simulations are identical). 

[ 5HTable 1 is about here] 
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We first compare the power of F/HP-ADF to ADF t test. The power of both tests is 

minimum at zero Δy0 (y0 = -0.1225) of which, the power of pure t test is higher for 

both sample sizes of 500 and 1,000. Actually, the power of HP-ADF should equal 

ADF t test if we follow the recommended rule that when F test cannot reject the null 

while t test can, HP-ADF reject the null. We keep not following this rule to show the 

superiority of t test over F test when ∆y0 = 0. The minimum power of F/HP-ADF test 

is 13% and 49% while those of pure t test are 16% and 56% for the sizes of 500 and 

1,000, respectively. However, when |Δy0| becomes bigger, t test is dominated by 

F/HP-ADF test. For the sample size of 500, when y0 deviates to -20σ and +20σ, the 

power of F/HP-ADF increases to 35% and 34% while t test just reject at rates of 

28% and 27%, respectively. The same phenomenon is observed for the sample size 

of 1,000. 

Comparing the cases of different sample sizes, T, of 500 and 1,000, we also 

recognize the trends of convergences of F/HP-ADF and t tests when sample sizes 

go to infinitive, implying the reductions in the differences among the tests when T 

becomes very large. It is visualized in 6HFigure 1 and 7HFigure 2, of which, the 

differences among the power curves are less clear in the second than that in the first. 

The power of GLS-DF test, as predicted, dominates F/HP-ADF and ADF t tests at 

zero Δy0, which reaches 24% and 78% for the sample sizes of 500 and 1,000, 

respectively. However, its power falls too fast when |Δy0| increases: even at Δy0 = 

±10σ, GLS-DF is no longer more powerful than the remaining tests: for the sample 

size of 500, GLS-DF rejects only at rates of 6.4% and 7.4%, while those of F/HP-

ADF and ADF t test are more than 15%; for the sample sizes of 1,000, GLS=DF 

rejects at rate of 19.4% while those of F/HP-ADF and ADF t tests are more than 

50%. 

[ 8HFigure 1 and 9HFigure 2 are about here] 
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4 Tests for Unit Root for Stock Prices in Ho Chi Minh 

City Stock Trading Center 

In this part, we apply the robust unit root tests recommended in the previous parts to 

examine the random walk hypothesis (RWH) for the stock prices in HoSTC. There 

have been various researches applying unit root tests as a step to exam RWH for 

the emerging as well as the developed markets. The results are mixing. Supporting 

evidences for null hypothesis include the three indices of Athens Stock Exchange 

(Panagiotidis, 2004) and monthly price indices of eighteen developed countries 

(Chan et al., 1997). For the rejections of null we may mention the cases of Sri 

Lanka’s indices, SSI and FSI (Abeysekera, 2001) and New Zealand’s indices, 

NZSE’s (Li and Xu, 2002). The so-young market of Vietnam would be widely 

believed not being efficient even in weak form. In addition, the observations on price 

behavior of the stocks quoted in HoSTC reveal the patterns which seem to be 

relevant to the issue of unexpected IV discussed above: (1) the composite index 

called Vietnam Index (VNINDEX) went to its first peak right after the open of the 

market, reaching 571 points from the starting value of 100 points, then followed by a 

dramatically adjusted period. (2) There were the opening prices which seemed to 

distinctively high (may derived from IPO overpricing) leading to the adjustments of 

the market in the subsequent trading sessions. Hence the prices series often had 

big IV followed by an adjustment period then a time trend later. These behaviors are 

likely to reflect the inefficiency of the market. However, the samples selected in the 

way that excludes such IVs may make unit root tests have low power, especially, 

when the sample sizes are small. We recall from 10HTable 1 that the power of HP-ADF 

and GLD-DF tests are just about 20% or less for the case of expected IV when 

sample size is 500 with α = 0.98. We will take this point into account when selecting 

the sample period. Another note is that while the rejection of unit root hypothesis 
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can be strong evidence against RWH, assuming constant expected returns, the 

acceptance of null is not enough to prove RWH. Despite the fact that the RWH are 

contained in the unit root null hypothesis, it is the permanent/temporary nature of 

shocks to price that concerns such tests (Campbell and McKinlay, 1997). 

4.1 Data and the selected tests 

In order to have the samples which contain as many as possible series with extreme 

IVs, we deliberately select the starting point of the sample period at the first peak of 

the market. The data includes all available stock prices series of HoSTC during the 

period from June 25 of 2001 (the peaked date of VNINDEX) to November 14 of 

2005. The samples consist of 31 series (including VNINDEX) with the sizes vary 

from 83 to 899. The prices series are adjusted for dividend payments and splits and 

then transformed into natural logarithm form. 

As discussed in the previous parts, for the robustness, GLS-DF test of Elliott et al. 

(1996), KPSS of Kwiatkowski et al. (1992)  are used together with t-type ADF test 

and HP-ADF test. We expect that GLS-DF improves size and power of the test for 

the case of expected IV while t-type ADF test and, especially, HP-ADF will be a 

good test in the case of unexpected IV. KPSS, which, oppositely to the others, set 

the null hypothesis of stationarity, would provide a good complimentary view  

4.2 Results and discussions 

[ 11HTable 2 is about here] 

12HTable 2 shows the results of unit root tests. For the following comments, we apply 

5% significance for all the tests. GLS-DF and KPSS strongly support the hypothesis 

that unit roots exist: GLS-DF cannot reject any series while KPSS cannot reject the 

null of stationarity of only one series, MHC. Contrarily, HP-ADF is able to reject 10 
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out of 31 series, including VNINDEX. An interesting point is all of the series which 

seem to have extreme IVs (13HFigure 3) are rejected by HP-ADF except the cases of 

HAP, LAF, and REE. However, F statistic of HAP is just almost at the critical value 

(6.24 versus 6.25) while those for LAF and REE are relatively high (5.35 and 5.40, 

respectively). The presences of extreme IVs are either due to the peak of the market 

(as for the case of VNINDEX and SAM) or due to first opening pricing (such as DHA 

and DPC). 

Since ADF tests may suffer size distortions if the series have negative MA root in 

error terms and/or the sample sizes are small, the rejections of HP-ADF are more 

convincing with several rejected series seem not to have negative MA roots and 

have moderate sample sizes, such as VNINDEX, DPC, and SAM (see 14HTable 3). 

Note that these three series cannot be rejected by ADF t test. Furthermore, we also 

realize the domination of HP-ADF test over the pure ADF t test: HP-ADF rejects 10 

series, nearly as double number of the rejections as by ADF t test, 6 series. All of 

the series rejected by t test are also rejected by HP-ADF. In general, surprisingly, 

robust tests for unit root still cannot decisively reject null of unit root for stock prices 

series in HoSTC, although we would be impressed by the rejections of HP-ADF test 

for a considerable number of the series, including VNINDEX. 

[ 15HTable 3 is about here] 

[ 16HFigure 3 is about here] 

A possible interpretation is the stock prices in HoSTC are stationary with the 

autoregressive coefficient very close to unity. Given the actual sample sizes of the 

series are around 100 to 900, referring to the simulation in the previous section, it is 

understandable that the unit root tests which are superior when IVs near the 

deterministic trend (e.g. GLD-DF) may not be powerful enough to reject the null. On 

the other hand, the rejections of HP-ADF for majority of the series with suspected 
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extreme IVs are reasonable. To see if the IVs are large enough to raise the power of 

HP-ADF, we make a small simulation of DHA series, which is not rejected by ADF t, 

DF-GLS, and KPSS tests but HP-ADF test. Based on the ARMA estimate and tests 

results of DHA, we can derive a simple model for DHA: 

  ttt uyty +++= −198.000005.00624.0  

  11 36.033.0 −− ++−= tttt uu εε  

where εt ~ IIN(0,0.01), t = 1, 2,…, 401. The initial value is y0 = 3.4 (real value of 3.46). 

A sample of 250 series from this DGP shows that: HP-ADF rejects 86.4%, ADF t 

test rejects 43.2% while DF-GLS rejects 0% (KPSS with trend accept null of 

stationarity at rate of 2/250 = 0.8%). 17HFigure 4 showed the first series in the simulated 

sample and the real series of DHA, which appear to be quite close to each other. 

The simulation results well support our interpretation.  

[ 18HFigure 4 is about here] 

We may come up with a description of the prices behavior in HoSTC. The price 

could follows but considerably swings around a certain deterministic trend that as a 

whole is very close to the random walk process. However, whenever there is a peak 

(the price goes extremely far from the trend), it will have prone to reverse to the 

deterministic trend. The peak-adjusted or mean-reversion behavior is clearly a 

property of a stationary process. For HoSTC, we may interpret this behavior as the 

consequences of over-reaction of the market and/or the effect of price limit 

regulation. On one hand, because the market lack of information, the investors often 

react in a massive way mainly based on the psychological factors. On the other 

hand, price limit may also prevent immediate price adjustment when new 

information arrives. Even the unit root tests in general cannot decisively reject the 

null for the stock prices in HoSTC, the rejections of HP-ADF are important to support 
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our view that the market is inefficient with prices having mean reversion behavior, 

especially, after a peak. 

We also have a look at the previous researches which used standard ADF t test for 

different stock indices. The non-rejection by ADF t test for the case of HoSTC 

(represented by VNINDEX), is remarkable if we compare with the tests results for 

Sri Lanka (Abeysekera, 2001) and New Zealand markets (Li and Xu, 2002). Both of 

these researches are able to reject null of unit root of the indices series, especially, 

the former can reject for the cases of small sample sizes of weekly and monthly FSI 

and SSI (the indices for Sri Lanka stock market). The differences suggest VNINDEX 

may behave more like random walk process than the indices of Sri Lanka and New 

Zealand, although rejected by HP-ADF test. A final notice is that the inclusion of HP-

ADF test may be appropriate for several researches which could not reject the null 

based on moderate/small sample sizes such as Chan et al. (1997) and Panagioditis 

(2004) as long as the samples could catch the large IVs. 

5 Conclusion 

This paper is a first analysis of the stock prices behavior in Ho Chi Minh City Stock 

Trading Center of Vietnam to examine the informational efficiency of the market. 

The robust unit root tests surprisingly cannot decisively reject the random walk 

hypothesis. However, in the case of high possibility of extreme initial value in stock 

prices observed during the sampling period the rejections based on HP-ADF test is 

remarkable. The large initial values may start from the peaks or high opening prices 

reflecting the inefficiency of the market. We have proved with simulations that this 

price behavior would be caught by HP-ADF test while the other tests including ADF t 

test have low power against such alternative given small and moderate sample size 

and, especially, when the autoregressive coefficients are close to unity. Therefore 
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the rejections of HP-ADF test for almost all of the series with suspected large initial 

values would be persuasive evidence against random walk hypothesis in HoSTC. 

On the other hand we also realize that stock prices series of HoSTC seem to be 

more close to random walk process than those of several emerging markets tested 

in the previous researches, at least during the non-peak period. For further concerns 

about testing RWH of HoSTC, more methods such as autocorrelation, runs, and 

variances ratios tests might be employed to clarify the issues. 

Since no test is superior for all possible values of the initial value, the choice to use 

several tests for the robustness is often necessary. In general, we recommend 

including HP-ADF test in the case that researcher suspects about the possibility of 

extreme initial value, e.g. the case of stock prices in emerging market. The other 

powerful tests assuming fixed or unconditionally distributed initial value, like DF-GLS, 

GLS-MZ and the tested proposed by Elliott et al. (1999) should be used in 

combination to produce robust results. 
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Appendix: Simulation for the model with serial 
correlated errors 

Power 

We extend the simulation to the models with serial correlated errors. In this part, we 

just focus on examining how the error structures affect the performance of HP-ADF 

and ADF t tests at various small to moderate sample sizes. The model is the same 

as (24) except: 

• The error terms now is either AR(1), which is: 

   εt = ρεt + ηt, where ηt ~ IIN(0,0.01) 

 or MA(1): εt = ηt + θtεt-1, where ηt ~ IIN(0,0.01) 

• We fix IV at Δy0 = 40σ, and expand the investigated sample sizes to include 

T = 100, 250, 500, and 1000 to focus more on small sample size 

performance of the tests. 

The results, which are based on 5,000 replications, are shown in 19HTable 4. For 

different error structures, we also observe the overall superiority of HP-ADF test 

over the t test and the improvements of the both tests when the sample size 

increases. However, the influences of error structures are considerable: both tests 

reduce their power when θ/ρ increases. For example, for the sample size of 250, 

when θ increases from -0.8 to 0.8, the rejection rates of F/HP-ADF and ADF t tests 

reduce from 100% and 94% to 15% and 9%, respectively. Based on the output of 

the simulation, 20HFigure 5 and 21HFigure 6 show the patterns of the superiority of F/HP-

ADF over t test for different sizes and error structures, which are MA(1) and AR(1). 

For both types of error structures, we would recognize that the superiority of F/HP-

ADF test over t test is eroded as the lag coefficient increase. For MA(1) errors, the 
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maximum differences in power across sample sizes are more than 30% when θ ≤ 0 

while those for positive θ are about 20% or smaller. Similarly for AR(1) errors, the 

maximum power differences when ρ  ≤ 0 are more than 40% while they are less 

than 10% when ρ > 0. Even when ρ = 0.8, the power of the F/HP-ADF is lower than 

t test for the sample sizes of 250, 500, and 1,000. In summary, from the simulation, 

F/HP-ADF test is still generally better than pure t test, especially, for small sample 

sizes although we should also be alerted about the effects of different error 

structures, especially when ρ or θ is positive and large that may diminish the 

superiority of F/HP-ADF test over the t test. 

[ 22HFigure 5 and 23HFigure 6 are about here] 

Size 

24HTable 5 shows the simulation results for actual size of HP-ADF and t tests at 

nominal size of 5% with sample sizes of 100, 200, and 500 for different error 

structures. As the size of ADF t test has been studied in the past researches 

(moreover, Muller and Elliott (2003) showed that IV does not affect size of the tests), 

in this part we try to point out that the size of HP-ADF and t tests are basically the 

same. As expected, from the results, we see that the rejection rates of HP-ADF and 

t tests are close to  each other for all different error structures and sample sizes. 

Consistent with the previous research, both tests suffer serious size distortions 

when the MA roots are negative, even for large sample sizes. For example, for the 

size of 500 and θ = -0.8, HP-ADF and t tests reject null at the rates of about 30%. 

However, the distortions are acceptable for the all the cases of non-negative θ 

although we should be alerted about slight size distortions when the sample size is 

small, e.g. of 100: the actual sizes of the both tests are about 8.5% and 12% when θ 

= 0.5 and ρ = -0.5, respectively. 
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Table 1 – Power of HP-ADF, t, and GLS-DF tests with different IVb 

T = 500 T = 1,000 
y0 

HP-ADF ADF t GLS-DF HP-ADF ADF t GLS-DF 

-0.6225 0.979 0.853 0.000 0.999 0.997 0.000

-0.5225 0.929 0.667 0.000 0.995 0.986 0.000

-0.4225 0.682 0.449 0.000 0.955 0.921 0.000

-0.3225 0.349 0.282 0.001 0.784 0.769 0.000

-0.2225 0.162 0.181 0.074 0.571 0.624 0.194

-0.1225a 0.129 0.163 0.244 0.489 0.563 0.778

-0.0225 0.177 0.189 0.064 0.575 0.632 0.194

0.0775 0.337 0.273 0.002 0.790 0.782 0.001

0.1775 0.680 0.444 0.000 0.959 0.934 0.000

0.2775 0.925 0.662 0.000 0.992 0.983 0.000

0.3775 0.976 0.848 0.000 0.998 0.996 0.000

a The unconditional expectation of IV 

b GLS-DF is used with MAIC for lag selection while GTS approach is used for HP-

ADF and t tests. 
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Table 2 – Unit root tests for HoSTC 

DF-GLS (MAIC) HP-ADF 
Stock Size 

tstat. Tcrit. 5% 
KPSS

tstat. tcrit. 5% tcrit. 1% Fstat. Fcrit. 5% 

AGF 887 -1.35 -2.89 0.30** -2.07 -3.41 -3.96 2.78 6.25 

BBC 583 -0.56 -2.89 0.61** -2.11 -3.41 -3.96 3.75 6.25 

BBT 423 -0.43 -2.92 0.59** -2.32 -3.42 -3.98 6.39* 6.31 

BPC 899 -1.42 -2.89 0.30** -2.21 -3.41 -3.96 2.82 6.25 

BT6 894 -0.96 -2.89 0.35** -2.48 -3.41 -3.96 3.55 6.25 

BTC 569 -1.59 -2.89 0.37** -2.11 -3.41 -3.97 2.85 6.27 

CAN 608 -1.29 -2.89 0.58** -0.98 -3.41 -3.96 1.66 6.25 

DHA 401 -0.31 -2.89 0.46** -1.93 -3.42 -3.98 8.24* 6.32 

DPC 592 0.13 -2.89 0.55** -1.90 -3.41 -3.96 7.64* 6.25 

GIL 577 -1.42 -2.89 0.26** -1.13 -3.41 -3.96 1.10 6.26 

GMD 892 -0.77 -2.89 0.38** -1.63 -3.41 -3.96 2.66 6.25 

HAP 658 -0.62 -2.89 0.61** -2.80 -3.41 -3.96 6.24 6.25 

HAS 723 -1.56 -2.89 0.39** -1.74 -3.41 -3.96 1.67 6.25 

KHA 810 -1.45 -2.89 0.44** -2.27 -3.41 -3.96 2.74 6.25 

LAF 658 -0.50 -2.89 0.64** -2.45 -3.41 -3.96 5.35 6.25 

MHC 168 -1.78 -2.96 0.09 -4.83** -3.44 -4.02 12.05* 6.42 

NKD 230 -0.98 -2.93 0.41** -0.10 -3.43 -4.00 4.45 6.37 

PMS 509 -1.47 -2.89 0.17* -3.44* -3.42 -3.98 6.64* 6.30 

PNC 90 -2.63 -3.07 0.23** -3.12 -3.46 -4.06 4.94 6.54 

REE 658 -0.47 -2.89 0.53** -2.72 -3.41 -3.96 5.40 6.25 

SAM 658 -0.78 -2.89 0.46** -3.67* -3.41 -3.96 8.23* 6.25 

SAV 882 -1.17 -2.89 0.32** -2.35 -3.41 -3.96 3.29 6.25 
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25HTable 2 – Unit root tests for HoSTC (continued) 

DF-GLS (MAIC) HP-ADF 
Stock Size 

tstat. Tcrit. 5% 
KPSS

t.stat. tcrit. 5% tcrit. 1% Fstat. Fcrit. 5% 

SFC 291 -0.74 -2.91 0.35** -4.69** -3.43 -3.99 13.02* 6.33 

SGH 649 -2.12 -2.89 0.62** -1.90 -3.41 -3.96 4.70 6.25 

SSC 182 -1.67 -2.95 0.36** -1.96 -3.44 -4.01 1.92 6.41 

TMS 658 -0.71 -2.89 0.56** -3.64* -3.41 -3.96 9.43* 6.25 

TNA 83 -1.02 -3.11 0.30** -5.17** -3.47 -4.08 27.28* 6.58 

TRI 579 -0.93 -2.89 0.38** -1.27 -3.41 -3.96 2.08 6.26 

TS4 817 -0.97 -2.89 0.30** -3.08 -3.41 -3.96 5.74 6.25 

VNIa 658 -0.61 -2.89 0.55** -3.27 -3.41 -3.96 7.84* 6.25 

VTC 693 -1.31 -2.89 0.51** -1.09 -3.41 -3.96 0.91 6.25 

 Note: 

- For KPSS tests, critical values are 0.216 (1%), 0.146 (5%), and 0.119 (10%). 

- All the tests are specified with time trend. GLS-DF is used with MAIC for lag 

selection. KPSS is used with Newey-West using Bartlett kernel method for 

selection of bandwidth. HP-ADF is used with OLS F-test and t-test for lag 

selections (GTS approach)  

- (*) or (**) mean the tests reject null at 5% or 1% respectively. 

- t critical values for HP-ADF tests shown in this table based on non-standard 

distribution assuming that β (time trend coefficient) is zero. If β is non-zero, t 

statistic would follow standard normal distribution (-1.65 at 5%, one-side). 

- a: Stands for VNINDEX 
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Table 3 – ARMA(1,1) estimates of difference series rejected by 
ADF t and HP-ADF tests 

Stock Const AR(1) MA(1) 

BBT 0.0010 0.98 -0.99 

DPC -0.0014 -0.34 0.42 

DHA 0.0018 0.58 -0.63 

MHC 0.0040 0.47 -0.62 

PMS 0.0012 0.03 -0.23 

SAM 0.0005 0.20 0.06 

SFC 0.0037 0.89 -1.00 

TMS 0.0016 0.97 -0.96 

TNA 0.0021 0.20 0.47 

VNINDEX -0.0008 0.10 0.23 
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Table 4 – Power of F/HP-ADF and t-type ADF tests with serial correlated 
errorsa 

Size (T) θ HP-ADF ADF ρ HP-ADF ADF 

-0.8 0.369 0.011 -0.8 0.390 0.042 

-0.5 0.235 0.060 -0.5 0.271 0.052 

0 0.147 0.048 0 0.147 0.048 

0.5 0.108 0.079 0.5 0.075 0.054 

100 

0.8 0.096 0.079 0.8 0.066 0.062 

-0.8 1.000 0.937 -0.8 0.928 0.476 

-0.5 0.946 0.394 -0.5 0.896 0.347 

0 0.632 0.176 0 0.632 0.176 

0.5 0.236 0.114 0.5 0.141 0.092 

250 

0.8 0.153 0.091 0.8 0.068 0.074 

-0.8 1.000 1.000 -0.8 0.994 0.972 

-0.5 0.998 0.981 -0.5 0.989 0.939 

0 0.925 0.662 0 0.925 0.662 

0.5 0.526 0.348 0.5 0.327 0.267 

500 

0.8 0.334 0.264 0.8 0.146 0.169 

-0.8 1.000 1.000 -0.8 1.000 1.000 

-0.5 1.000 1.000 -0.5 1.000 0.999 

0 0.992 0.983 0 0.992 0.983 

0.5 0.897 0.858 0.5 0.769 0.759 

1,000 

0.8 0.749 0.729 0.8 0.472 0.531 

a: Both HP-ADF and ADF t tests use GTS approach to select the lag lengths. 
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Table 5 – Size comparison between HP-ADF and pure ADF t testa 

Size (T) θ HP-ADF ADF t ρ HP-ADF ADF t 

-0.8 0.792 0.805 -0.8 0.051 0.049 

-0.5 0.426 0.452 -0.5 0.122 0.123 

0 0.051 0.047 0 0.051 0.047 

0.5 0.084 0.086 0.5 0.053 0.045 

100 

0.8 0.069 0.066 0.8 0.062 0.053 

-0.8 0.571 0.595 -0.8 0.047 0.046 

-0.5 0.215 0.238 -0.5 0.049 0.047 

0 0.051 0.052 0 0.051 0.052 

0.5 0.072 0.075 0.5 0.049 0.050 

200 

0.8 0.051 0.056 0.8 0.052 0.052 

-0.8 0.303 0.328 -0.8 0.049 0.052 

-0.5 0.133 0.145 -0.5 0.051 0.053 

0 0.054 0.055 0 0.054 0.055 

0.5 0.050 0.049 0.5 0.051 0.054 

500 

0.8 0.054 0.054 0.8 0.052 0.053 

a: The specifications of the model is the same as in the previous simulation except α 

= 1 and β = 0. Both HP-ADF and ADF t tests use GTS approach to select the lag 

lengths. 
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Figure 1 – Power of F test, HP-ADF test, and t test with varying IV (T = 500) 
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Figure 2 - Power of F test, HP-ADF test, and t test with varying IV (T = 1,000) 
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Figure 3 – Four (of ten) series which are rejected by HP-ADF test 
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Figure 4 - Simulated DHA and the real series (in log form) 
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Figure 5 – The superiority (differences) of F/HP-ADF over t test for different 
sample sizes when errors follow MA(1) with coefficient θ. 



 37

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

100 250 500 1000

ρ = -.8 ρ = -.5 ρ = 0 ρ = .5 ρ = .8
 

Figure 6 – The superiority (differences) of F/HP-ADF over t test for different 
sample sizes when errors follow AR(1) with coefficient ρ. 
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