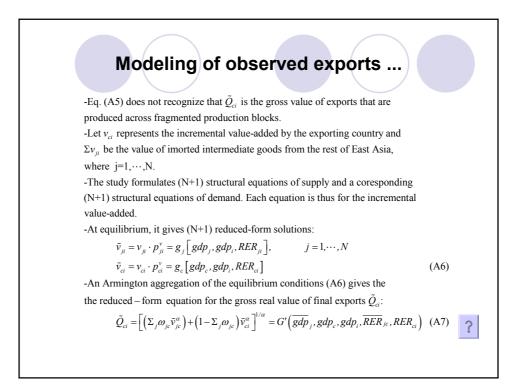
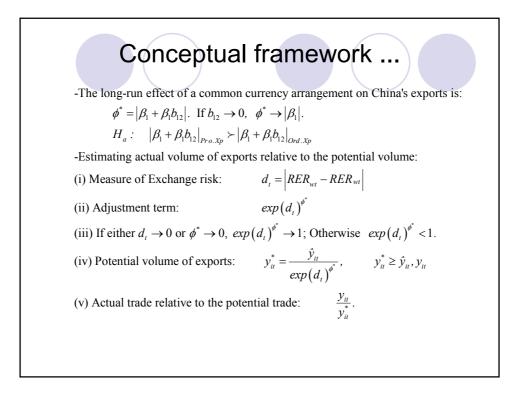


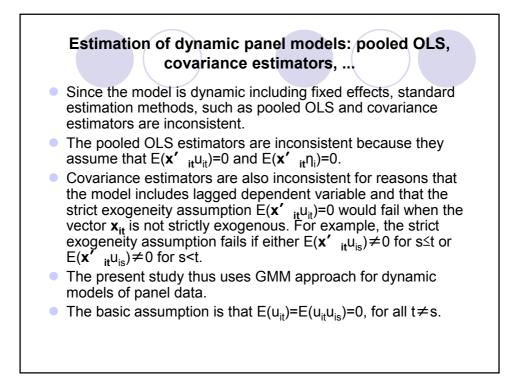
		nor	te and	l oyn	orts i	n 200	5 (in	%	
	3	por					• (, ,0)	
				100 A N		F		F11.45	
Partner Import categories	World	Japan (1)	S. Korea & Taiwan (2)	ASEAN- 5 (3)	Hong Kong (4)	East Asia (5=1+2+3+ 4)	United States	EU-15	Rest of the World
2005	•								
Total imports Ordinary imports	100.0 42.4	15.2 5.4	23.0 5.7	10.9 3.1	1.9 0.5	50.9 14.8	7.4 3.9	10.7 6.4	31.1 17.3
Imports for processing	41.5	6.9	14.4	5.7	1.2	28.1	1.9	1.8	9.7
Others	16.1	2.9	2.9	2.1	0.1	8.1	1.5	2.4	4.1
Partner Export categories	World	Japan (1)	S. Korea & Taiwan (2)	ASEA N-5 (3)	East Asia (4=1+2+3)		United States	EU-15	Rest the Wor
2005									
Total Exports	100.0	11.0	6.8	6.3	24.1	16.3	21.4	17.3	20.
Ordinary Exports	41.3	4.4	3.2	2.9	10.5	3.3	6.9	7.4	13.
Processed Exports	54.7	6.5	3.4	3.2	13.1	12.2	13.9	9.5	6.0
Others	4.0	0.1	0.2	0.2	0.5	0.9	0.6	0.4	1.7

Partner Trade categories	World	Japan (1)	S. Korea & Taiwan (2)	ASEAN-5 (3)	East Asia (4=1+2+3)	Hong Kong	United States	EU-15	Rest of t World
2005					_				
Trade Account Balance	102.0	-16.4	-99.8	-23.8	-140.1	112.3	114.3	61.4	-45.8
Ordinary Trade	35.4	-2.5	-12.9	2.0	-13.4	21.6	26.9	14.4	-14.0
Processing Trade	142.5	4.5	-69.3	-13.3	-78.1	85.1	92.9	60.4	-17.9
Others	-75.9	-18.5	-17.7	-12.4	-48.6	5.6	-5.6	-13.4	-13.9
Notes: China's bilateral t									



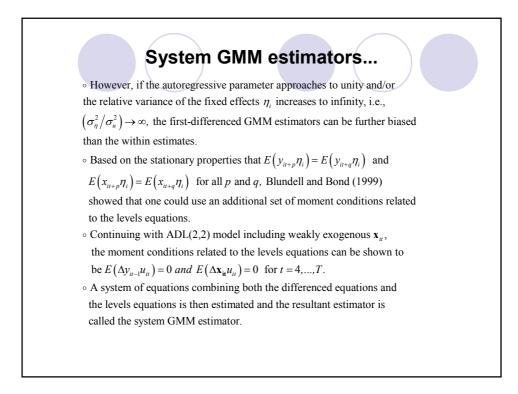

$$Q_{ci}^{x} = Q_{ic}^{m} = Q_{ci} \tag{A4}$$

-Eq.(4) is the equilibrium condition for the export market. Its solution for real value of observed exports from c to i is shown below:


$$\tilde{Q}_{ci} = \left(Q_{ci} \cdot p_{ci}^{x}\right) = \left[A^{-(1+d)}B^{(1+b)}gdp_{c}^{-c(1+d)}gdp_{i}^{e(1+b)}RER_{ci}^{d(1+b)}\right]^{1/(b-d)} \\ = G\left(gdp_{c}, gdp_{i}, RER_{ci}\right)$$
(A5)

Conceptual framework -Eq.(7) includes arguments \overline{RER}_{jc} and RER_{ci} , $\therefore RER_{ii} = (RER_{ic} \cdot RER_{ci})$ $\overline{RER}_{jc} = \left(\Sigma_{j}\omega_{jc} \cdot RER_{jc}^{\alpha}\right)^{1/\alpha} \Rightarrow \lim_{\alpha \to 0} \left(\Sigma_{j}\omega_{jc} \cdot RER_{jc}^{\alpha}\right)^{1/\alpha} = \prod_{j} RER_{jc}^{\omega_{jc}} [L'Hôpital's rule]$ $ln(\overline{RER}_{jc}) = \Sigma_{j}\omega_{jc} \cdot ln(RER_{jc}) = RER_{w}$ (*) -Excluding the set of other controls, a stochastic formulation of Eq.(A7) is: $y_i = \beta_1 RER_w + \beta_2 RER_{ci} + u_i, \quad \beta_1 < 0, \quad \beta_2 < 0$ (1)-A hypothetical case assuming that there exists a fixed exchange rate system in East Asia is formulated below: $\beta_2^* < 0$ $y_i = \beta_2^* RER_{ci} + v_i,$ (2)-When Eq.(2) is applied to real data, the bias is $plim(\hat{\beta}_2^* - \beta_2) = \beta_1 b_{12} > 0.$? -It is the well-known omitted variable problem. -If the region were indeed an OCA, RER, would cease to be relevant, Eq.(2) will be the true specification. $y_i = \beta_2 RER_{ci} + v_i$ (2a)

The dynamic panel data model -It is an autoregressive and distributed lag (ADL) formulation: $\mathbf{y}_{it} = \sum_{k=1}^{p} \alpha_k \mathbf{y}_{it-k} + \boldsymbol{\beta}'(\mathbf{L}) \mathbf{x}_{it} + \boldsymbol{\gamma}' \mathbf{z}_i + \boldsymbol{\eta}_i + \boldsymbol{\delta}'_i \mathbf{d}_{it} + \mathbf{u}_{it},$ $t = p + 1, \dots, T; i = 1, \dots, N$ (3)-Two benchmark specifications: $y_{it} = \sum_{k=1}^{2} \alpha_{k} y_{it,k} + \beta_{0} GDP_{it} + \beta_{1} GDP_{it-1} + \beta_{2} GDP_{it-2} + \xi_{0} RER_{cit} + \beta_{0} GDP_{it-2} + \xi_{0} RER_{cit} + \beta_{0} GDP_{it-1} + \beta_{0} GDP_{it-1$ $\xi_1 RER_{cit-1} + \xi_2 RER_{cit-2} + \psi_0 RER_{wt} + \psi_1 RER_{wt-1} + \psi_1 RER_{wt-1}$ $+\psi_2 RER_{wt-2} + \gamma' \mathbf{z}_i + \eta_i + \delta'_i \mathbf{d}_{it} + u_{it}$ (3.1) $y_{it} = \sum_{k=1}^{2} \alpha_{k}^{*} y_{it,k} + \beta_{0}^{*} GDP_{it} + \beta_{1}^{*} GDP_{it-1} + \beta_{2}^{*} GDP_{it-2} + \xi_{0}^{*} RER_{cit} +$ $\xi_1^* RER_{cit-1} + \xi_2^* RER_{cit-2} + \gamma^{*'} \mathbf{z}_i + \eta_i + \delta_i^{*'} \mathbf{d}_{it} + \mathbf{v}_{it}$ (3.2)-Key features: i. ADL terms are selected on the basis of observed minimum of AIC and/or BIC criteria so that the conditional distribution is stationary. ii. The model does not require that the system $(y_{it}, \mathbf{x}_{it})$ is cointegrated. iii. The specifications are more general than other restrictive long-run specifications, e.g., DOLS or FMOLS.



First-diff GMM estimators...

• Following Arellano and Bond (1991), the assumptions that u_{ii} 's are serially uncorrelated and that the vector \mathbf{x}_{it} is, say, predetermined in the sense that $E(\mathbf{x}'_{it}u_{is}) \neq 0$ for s < t or zero otherwise will give rise to a set of moment conditions in the first-differenced equations. • Written compactly, $E(Z'_i \Delta u_i) = 0$ for $i = 1, \dots, N$, where $\Delta u_i = (\Delta u_{i3}, \dots, \Delta u_{iT})'$, and the optimal matrix of instruments $Z_i = \text{diag}(y_{i1} \cdots y_{is} \mathbf{x}'_{i1} \cdots \mathbf{x}'_{is})$ for $(s = 1, \dots, T - 3)$ are valid instruments.

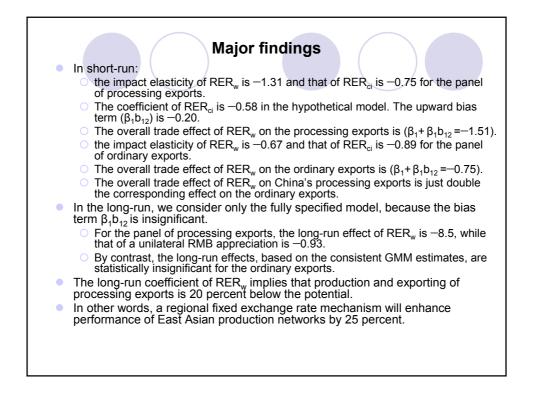
 \circ Different exogeneity assumption about the vector \boldsymbol{x}_{it} will lead to a varying set of moment conditions.

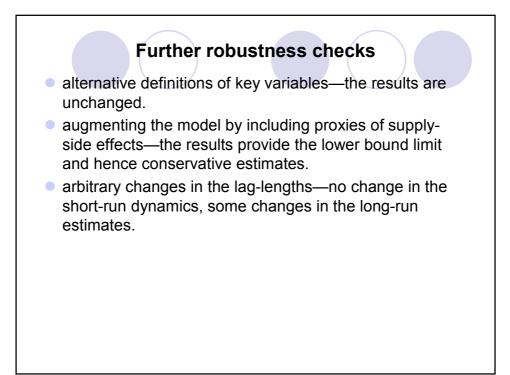
 \circ GMM estimators that are based on these moment conditions are called the first-differenced GMM estimators.

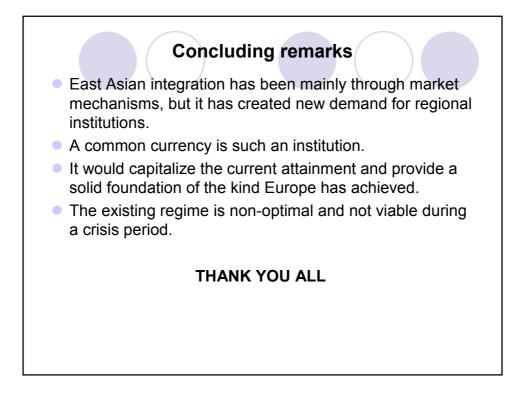
	1	Fully spe	cified mod	el	Hypothetical model
	1	2	3	4	5
Independent Variables	Pooled OLS	Fixed-Effect	GMM1	GMM2	GMM2
Lagged real exports _{i(t-1)}	0.988***	0.774***	0.791***	0.776***	0.663***
	(0.073)	(0.084)	(0.07)	(0.07)	(0.09)
GDP of importer _{it}	2.466***	2.480***	2.674***	2.560***	2.494***
	(0.49)	(0.48)	(0.56)	(0.51)	(0.57)
GDP of importer _{i(t-1)}	-3.037***	-2.382***	-2.515***	-2.091**	-1.465**
	(0.77)	(0.74)	(0.72)	(0.80)	(0.70)
Bilateral RMB RER _{ci,t}	-0.784***	-0.799***	-0.718***	-0.754***	-0.584***
	(0.19)	(0.19)	(0.19)	(0.18)	(0.16)
Intra-regional RER flexibility _{wt}	-1.691***	-1.368***	-1.088***	-1.306***	
	(0.44)	(0.27)	(0.22)	(0.37)	
Intra-regional RER flexibility _{w(1-2)}	-0.799**	-0.738***	-0.439*	-0.715*	
	(0.32)	(0.25)	(0.22)	(0.35)	
ml			-2.94***	-2.91***	-2.81***
m2			-0.29	-0.28	-1.11
Hansen J Statistic			0.009	0.59	0.11
P-value (d.f.)			(10)	(28)	(21)
No. of Groups	33	33	33	33	33
Estimation Period	1992.2005	1992:2005	1992:2005	1992.2005	1992:2005
No. of obs.	396	396	396	396	396

Results (Table 5)—Dynamic estimates for China's ordinary exports to 33 countries, 1992-2005

		Fully spec	ified mod	el	Hypothetical model
Independent Variables	Pooled OLS	Fixed-Effect	GMM1	GMM2	GMM2
Lagged real exports _{i(t-1)}	0.657***	0.504***	0.572***	0.537***	0.545***
	(0.10)	(0.10)	(0.08)	(0.11)	(0.08)
Lagged real exports _{i(t-2)}	0.288***	0.198**	0.342***	0.384***	0.301**
	(0.10)	(0.09)	(0.09)	(0.10)	(0.11)
GDP of importerit	1.795***	1.823***	1.768***	1.564**	1.850***
· · ·	(0.47)	(0.49)	(0.63)	(0.64)	(0.60)
Bilateral RMB RER _{cit}	-0.861***	-1.001***	-0.821***	-0.889***	-0 749***
	(0.13)	(0.14)	(0.16)	(0.15)	(0.12)
Bilateral RMB RER _{ci.(t-1)}	0.526***	0.417***	0.500**	0.480***	0.204
	(0.15)	(0.15)	(0.19)	(0.17)	(0.14)
Bilateral RMB RER _{ci.(t-2)}	0.414***	0.233*	0.411***	0.352**	0.559***
	(0.12)	(0.14)	(0.11)	(0.13)	(0.14)
Intra-regional RER flexibility _{wt}	-0.853***	-1.028***	-0.455**	-0.676**	
	(0.32)	(0.25)	(0.21)	(0.33)	
Intra-regional RER flexibilityw(t-1)	0.409*	0.348	0.436*	0.398*	
	(0.23)	(0.23)	(0.22)	(0.23)	
Intra-regional RER flexibilityw(t-2)	-0 904***	-1.119***	-0.701***	-0.937***	
	(0.24)	(0.22)	(0.16)	(0.22)	
m1	ĺ	1	-1.71*	-1.84**	-1.68*
m2			-0.08	-0.34	0.06
Hansen J Statistic			0.009	0.289	0.087
P-value (d.f.)			(10)	(28)	(21)
No. of Groups	33	33	33	33	33
Estimation Period	1992:2005	1992:2005	1992:2005	1992:2005	1992:2005
No. of obs.	396	396	396	396	396


Results (Table 6)—Estimates of long-run parameters (based dynamic estimates of the fully specified model)


Specifications and estimations methods	Income of	Bilateral RMB	Intra-regional
(Dynamic model Eq.(3.1) only)	importing	real exchange	RER
Panel A: China's processing exports to 33 countries—1992-2005	country $(\hat{\beta})$	rate $(\hat{\xi})$	flexibility $(\hat{\psi})$
(1) Within estimates	2.497***	-1.131***	-4.503***
	(0.772)	(0.374)	(0.572)
(2) GMM system estimates (both the RER vars	1.011***	-0.257	-5.432***
are treated strictly exogenous)	(0.153)	(0.321)	(1.002)
(3) GMM system estimates (both the RER vars	0.975***	-0.934**	-8.465**
are treated predetermined)	(0.180)	(0.481)	(4.558)
Panel B: China's ordinary exports to 33 countries—1992-2005			
(1) Within estimates	0.219	-1.175***	-6.022***
	(0.727)	(0.338)	(0.696)
(2) GMM system estimates (both the RER vars	1.064***	1.049**	-8.376
are treated strictly exogenous)	(0.103)	(0.397)	(5.743)
(3) GMM system estimates (both the RER vars	0.946***	-0.715	-15.389
are treated predetermined)	(0.269)	(1.607)	(31.130)


Notes: *** p<0.01, ** p<0.05, * p<0.1

Importer	Importing	\overline{y}_i	\overline{y}_{i}^{*}	$\overline{y}_i^* - \overline{y}_i$	t-ratio	$(\overline{y}_i / \overline{y}_i^*)$
IDs	country	(in million USD) [1]	(in million USD) [2]	(in million USD) [3]	[4]	[5]
101	Argentina	179	243	63.6	2.4	0.74
102	Australia	2112	2508	396.1	3.7	0.84
103	Austria	241	396	154.2	5.6	0.61
104	Belgium	1520	1691	170.7	2.2	0.90
105	Brazil	692	769	76.3	1.1	0.90
106	Canada	2183	2651	468.3	2.7	0.82
107	Denmark	511	669	158.0	4.8	0.76
108	Finland	749	785	36.7	0.7	0.95
109	France	2812	3912	1099.7	4.0	0.72
110	Germany,FR	8065	9809	1744.0	3.3	0.82
111	Greece	235	321	86.8	2.8	0.73
112	Hong Kong	42306	48473	6167.8	1.7	0.87
113	Iceland	8	13	5.1	1.9	0.61
114	Indonesia	793	844	51.3	0.9	0.94
115	Ireland	712	667	-45.2	-0.7	1.07
116	Italy	1599	2290	690.8	9.0	0.70

	ast Asia	(Esun		China's		ssing expo
Importer IDs	Importing country	\overline{y}_i (in million USD) [1]	\overline{y}_i^* (in million USD) [2]	$\overline{y}_i^* - \overline{y}_i$ (in million USD) [3]	t-ratio [4]	$(\overline{y}_i / \overline{y}_i^*)$ [5]
117	Japan	27891	42850	14958.8	8.8	0.65
118	Korea Rep	7241	9439	2198.8	7.2	0.77
119	Luxembourg	326	161	-164.8	-1.6	2.02
120	Malaysia	2189	2388	199.6	1.9	0.92
121	Mexico	972	965	-7.6	-0.1	1.01
122	Netherlands	6175	5487	-687.8	-1.0	1.13
123	New Zealand	219	273	54.3	4.3	0.80
124	Philippines	918	878	-40.0	-0.5	1.05
125	Portugal	110	156	46.2	5.4	0.70
126	Russia	636	932	296.7	5.0	0.68
127	Singapore	4565	5313	748.3	2.8	0.86
128	Spain	997	1384	386.4	6.4	0.72
129	Sweden	470	722	252.4	6.6	0.65
130	Taiwan pro	4075	6533	2457.5	10.5	0.62
131	Thailand	1397	1472	75.5	1.2	0.95
132	United Kingdom	4726	6084	1358.7	6.1	0.78
133	United States	46779	52286	5507.8	1.8	0.89
	Overall	174400	213365	38965	2.35	0.81

